Bitcoin ABC 0.32.7
P2P Digital Currency
group_impl.h
Go to the documentation of this file.
1/***********************************************************************
2 * Copyright (c) 2013, 2014 Pieter Wuille *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5 ***********************************************************************/
6
7#ifndef SECP256K1_GROUP_IMPL_H
8#define SECP256K1_GROUP_IMPL_H
9
10#include "field.h"
11#include "group.h"
12
13#define SECP256K1_G_ORDER_13 SECP256K1_GE_CONST(\
14 0xc3459c3d, 0x35326167, 0xcd86cce8, 0x07a2417f,\
15 0x5b8bd567, 0xde8538ee, 0x0d507b0c, 0xd128f5bb,\
16 0x8e467fec, 0xcd30000a, 0x6cc1184e, 0x25d382c2,\
17 0xa2f4494e, 0x2fbe9abc, 0x8b64abac, 0xd005fb24\
18)
19#define SECP256K1_G_ORDER_199 SECP256K1_GE_CONST(\
20 0x226e653f, 0xc8df7744, 0x9bacbf12, 0x7d1dcbf9,\
21 0x87f05b2a, 0xe7edbd28, 0x1f564575, 0xc48dcf18,\
22 0xa13872c2, 0xe933bb17, 0x5d9ffd5b, 0xb5b6e10c,\
23 0x57fe3c00, 0xbaaaa15a, 0xe003ec3e, 0x9c269bae\
24)
28#define SECP256K1_G SECP256K1_GE_CONST(\
29 0x79BE667EUL, 0xF9DCBBACUL, 0x55A06295UL, 0xCE870B07UL,\
30 0x029BFCDBUL, 0x2DCE28D9UL, 0x59F2815BUL, 0x16F81798UL,\
31 0x483ADA77UL, 0x26A3C465UL, 0x5DA4FBFCUL, 0x0E1108A8UL,\
32 0xFD17B448UL, 0xA6855419UL, 0x9C47D08FUL, 0xFB10D4B8UL\
33)
34/* These exhaustive group test orders and generators are chosen such that:
35 * - The field size is equal to that of secp256k1, so field code is the same.
36 * - The curve equation is of the form y^2=x^3+B for some constant B.
37 * - The subgroup has a generator 2*P, where P.x=1.
38 * - The subgroup has size less than 1000 to permit exhaustive testing.
39 * - The subgroup admits an endomorphism of the form lambda*(x,y) == (beta*x,y).
40 *
41 * These parameters are generated using sage/gen_exhaustive_groups.sage.
42 */
43#if defined(EXHAUSTIVE_TEST_ORDER)
44# if EXHAUSTIVE_TEST_ORDER == 13
46
48 0x3d3486b2, 0x159a9ca5, 0xc75638be, 0xb23a69bc,
49 0x946a45ab, 0x24801247, 0xb4ed2b8e, 0x26b6a417
50);
51# elif EXHAUSTIVE_TEST_ORDER == 199
53
55 0x2cca28fa, 0xfc614b80, 0x2a3db42b, 0x00ba00b1,
56 0xbea8d943, 0xdace9ab2, 0x9536daea, 0x0074defb
57);
58# else
59# error No known generator for the specified exhaustive test group order.
60# endif
61#else
63
64static const secp256k1_fe secp256k1_fe_const_b = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 7);
65#endif
66
68 secp256k1_fe zi2;
69 secp256k1_fe zi3;
71 secp256k1_fe_sqr(&zi2, zi);
72 secp256k1_fe_mul(&zi3, &zi2, zi);
73 secp256k1_fe_mul(&r->x, &a->x, &zi2);
74 secp256k1_fe_mul(&r->y, &a->y, &zi3);
75 r->infinity = a->infinity;
76}
77
78static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y) {
79 r->infinity = 0;
80 r->x = *x;
81 r->y = *y;
82}
83
85 return a->infinity;
86}
87
88static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a) {
89 *r = *a;
91 secp256k1_fe_negate(&r->y, &r->y, 1);
92}
93
95 secp256k1_fe z2, z3;
96 r->infinity = a->infinity;
97 secp256k1_fe_inv(&a->z, &a->z);
98 secp256k1_fe_sqr(&z2, &a->z);
99 secp256k1_fe_mul(&z3, &a->z, &z2);
100 secp256k1_fe_mul(&a->x, &a->x, &z2);
101 secp256k1_fe_mul(&a->y, &a->y, &z3);
102 secp256k1_fe_set_int(&a->z, 1);
103 r->x = a->x;
104 r->y = a->y;
105}
106
108 secp256k1_fe z2, z3;
109 if (a->infinity) {
111 return;
112 }
113 secp256k1_fe_inv_var(&a->z, &a->z);
114 secp256k1_fe_sqr(&z2, &a->z);
115 secp256k1_fe_mul(&z3, &a->z, &z2);
116 secp256k1_fe_mul(&a->x, &a->x, &z2);
117 secp256k1_fe_mul(&a->y, &a->y, &z3);
118 secp256k1_fe_set_int(&a->z, 1);
119 secp256k1_ge_set_xy(r, &a->x, &a->y);
120}
121
122static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len) {
123 secp256k1_fe u;
124 size_t i;
125 size_t last_i = SIZE_MAX;
126
127 for (i = 0; i < len; i++) {
128 if (a[i].infinity) {
130 } else {
131 /* Use destination's x coordinates as scratch space */
132 if (last_i == SIZE_MAX) {
133 r[i].x = a[i].z;
134 } else {
135 secp256k1_fe_mul(&r[i].x, &r[last_i].x, &a[i].z);
136 }
137 last_i = i;
138 }
139 }
140 if (last_i == SIZE_MAX) {
141 return;
142 }
143 secp256k1_fe_inv_var(&u, &r[last_i].x);
144
145 i = last_i;
146 while (i > 0) {
147 i--;
148 if (!a[i].infinity) {
149 secp256k1_fe_mul(&r[last_i].x, &r[i].x, &u);
150 secp256k1_fe_mul(&u, &u, &a[last_i].z);
151 last_i = i;
152 }
153 }
154 VERIFY_CHECK(!a[last_i].infinity);
155 r[last_i].x = u;
156
157 for (i = 0; i < len; i++) {
158 if (!a[i].infinity) {
159 secp256k1_ge_set_gej_zinv(&r[i], &a[i], &r[i].x);
160 }
161 }
162}
163
164static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp256k1_fe *globalz, const secp256k1_gej *a, const secp256k1_fe *zr) {
165 size_t i = len - 1;
166 secp256k1_fe zs;
167
168 if (len > 0) {
169 /* The z of the final point gives us the "global Z" for the table. */
170 r[i].x = a[i].x;
171 r[i].y = a[i].y;
172 /* Ensure all y values are in weak normal form for fast negation of points */
174 *globalz = a[i].z;
175 r[i].infinity = 0;
176 zs = zr[i];
177
178 /* Work our way backwards, using the z-ratios to scale the x/y values. */
179 while (i > 0) {
180 if (i != len - 1) {
181 secp256k1_fe_mul(&zs, &zs, &zr[i]);
182 }
183 i--;
184 secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zs);
185 }
186 }
187}
188
190 r->infinity = 1;
194}
195
197 r->infinity = 1;
200}
201
203 r->infinity = 0;
207}
208
210 r->infinity = 0;
213}
214
216 secp256k1_fe x2, x3;
217 r->x = *x;
218 secp256k1_fe_sqr(&x2, x);
219 secp256k1_fe_mul(&x3, x, &x2);
220 r->infinity = 0;
222 return secp256k1_fe_sqrt(&r->y, &x3);
223}
224
225static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) {
226 if (!secp256k1_ge_set_xquad(r, x)) {
227 return 0;
228 }
230 if (secp256k1_fe_is_odd(&r->y) != odd) {
231 secp256k1_fe_negate(&r->y, &r->y, 1);
232 }
233 return 1;
234
235}
236
238 r->infinity = a->infinity;
239 r->x = a->x;
240 r->y = a->y;
241 secp256k1_fe_set_int(&r->z, 1);
242}
243
244static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a) {
245 secp256k1_fe r, r2;
247 secp256k1_fe_sqr(&r, &a->z); secp256k1_fe_mul(&r, &r, x);
248 r2 = a->x; secp256k1_fe_normalize_weak(&r2);
249 return secp256k1_fe_equal_var(&r, &r2);
250}
251
253 r->infinity = a->infinity;
254 r->x = a->x;
255 r->y = a->y;
256 r->z = a->z;
258 secp256k1_fe_negate(&r->y, &r->y, 1);
259}
260
262 return a->infinity;
263}
264
266 secp256k1_fe y2, x3;
267 if (a->infinity) {
268 return 0;
269 }
270 /* y^2 = x^3 + 7 */
271 secp256k1_fe_sqr(&y2, &a->y);
272 secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
275 return secp256k1_fe_equal_var(&y2, &x3);
276}
277
279 /* Operations: 3 mul, 4 sqr, 0 normalize, 12 mul_int/add/negate.
280 *
281 * Note that there is an implementation described at
282 * https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
283 * which trades a multiply for a square, but in practice this is actually slower,
284 * mainly because it requires more normalizations.
285 */
286 secp256k1_fe t1,t2,t3,t4;
287
288 r->infinity = a->infinity;
289
290 secp256k1_fe_mul(&r->z, &a->z, &a->y);
291 secp256k1_fe_mul_int(&r->z, 2); /* Z' = 2*Y*Z (2) */
292 secp256k1_fe_sqr(&t1, &a->x);
293 secp256k1_fe_mul_int(&t1, 3); /* T1 = 3*X^2 (3) */
294 secp256k1_fe_sqr(&t2, &t1); /* T2 = 9*X^4 (1) */
295 secp256k1_fe_sqr(&t3, &a->y);
296 secp256k1_fe_mul_int(&t3, 2); /* T3 = 2*Y^2 (2) */
297 secp256k1_fe_sqr(&t4, &t3);
298 secp256k1_fe_mul_int(&t4, 2); /* T4 = 8*Y^4 (2) */
299 secp256k1_fe_mul(&t3, &t3, &a->x); /* T3 = 2*X*Y^2 (1) */
300 r->x = t3;
301 secp256k1_fe_mul_int(&r->x, 4); /* X' = 8*X*Y^2 (4) */
302 secp256k1_fe_negate(&r->x, &r->x, 4); /* X' = -8*X*Y^2 (5) */
303 secp256k1_fe_add(&r->x, &t2); /* X' = 9*X^4 - 8*X*Y^2 (6) */
304 secp256k1_fe_negate(&t2, &t2, 1); /* T2 = -9*X^4 (2) */
305 secp256k1_fe_mul_int(&t3, 6); /* T3 = 12*X*Y^2 (6) */
306 secp256k1_fe_add(&t3, &t2); /* T3 = 12*X*Y^2 - 9*X^4 (8) */
307 secp256k1_fe_mul(&r->y, &t1, &t3); /* Y' = 36*X^3*Y^2 - 27*X^6 (1) */
308 secp256k1_fe_negate(&t2, &t4, 2); /* T2 = -8*Y^4 (3) */
309 secp256k1_fe_add(&r->y, &t2); /* Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4) */
310}
311
323 if (a->infinity) {
325 if (rzr != NULL) {
326 secp256k1_fe_set_int(rzr, 1);
327 }
328 return;
329 }
330
331 if (rzr != NULL) {
332 *rzr = a->y;
334 secp256k1_fe_mul_int(rzr, 2);
335 }
336
338}
339
341 /* Operations: 12 mul, 4 sqr, 2 normalize, 12 mul_int/add/negate */
342 secp256k1_fe z22, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
343
344 if (a->infinity) {
345 VERIFY_CHECK(rzr == NULL);
346 *r = *b;
347 return;
348 }
349
350 if (b->infinity) {
351 if (rzr != NULL) {
352 secp256k1_fe_set_int(rzr, 1);
353 }
354 *r = *a;
355 return;
356 }
357
358 r->infinity = 0;
359 secp256k1_fe_sqr(&z22, &b->z);
360 secp256k1_fe_sqr(&z12, &a->z);
361 secp256k1_fe_mul(&u1, &a->x, &z22);
362 secp256k1_fe_mul(&u2, &b->x, &z12);
363 secp256k1_fe_mul(&s1, &a->y, &z22); secp256k1_fe_mul(&s1, &s1, &b->z);
364 secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
365 secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
366 secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
369 secp256k1_gej_double_var(r, a, rzr);
370 } else {
371 if (rzr != NULL) {
372 secp256k1_fe_set_int(rzr, 0);
373 }
375 }
376 return;
377 }
378 secp256k1_fe_sqr(&i2, &i);
379 secp256k1_fe_sqr(&h2, &h);
380 secp256k1_fe_mul(&h3, &h, &h2);
381 secp256k1_fe_mul(&h, &h, &b->z);
382 if (rzr != NULL) {
383 *rzr = h;
384 }
385 secp256k1_fe_mul(&r->z, &a->z, &h);
386 secp256k1_fe_mul(&t, &u1, &h2);
387 r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
388 secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
389 secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
390 secp256k1_fe_add(&r->y, &h3);
391}
392
394 /* 8 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */
395 secp256k1_fe z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
396 if (a->infinity) {
397 VERIFY_CHECK(rzr == NULL);
399 return;
400 }
401 if (b->infinity) {
402 if (rzr != NULL) {
403 secp256k1_fe_set_int(rzr, 1);
404 }
405 *r = *a;
406 return;
407 }
408 r->infinity = 0;
409
410 secp256k1_fe_sqr(&z12, &a->z);
411 u1 = a->x; secp256k1_fe_normalize_weak(&u1);
412 secp256k1_fe_mul(&u2, &b->x, &z12);
413 s1 = a->y; secp256k1_fe_normalize_weak(&s1);
414 secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
415 secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
416 secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
419 secp256k1_gej_double_var(r, a, rzr);
420 } else {
421 if (rzr != NULL) {
422 secp256k1_fe_set_int(rzr, 0);
423 }
425 }
426 return;
427 }
428 secp256k1_fe_sqr(&i2, &i);
429 secp256k1_fe_sqr(&h2, &h);
430 secp256k1_fe_mul(&h3, &h, &h2);
431 if (rzr != NULL) {
432 *rzr = h;
433 }
434 secp256k1_fe_mul(&r->z, &a->z, &h);
435 secp256k1_fe_mul(&t, &u1, &h2);
436 r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
437 secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
438 secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
439 secp256k1_fe_add(&r->y, &h3);
440}
441
442static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv) {
443 /* 9 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */
444 secp256k1_fe az, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
445
446 if (b->infinity) {
447 *r = *a;
448 return;
449 }
450 if (a->infinity) {
451 secp256k1_fe bzinv2, bzinv3;
452 r->infinity = b->infinity;
453 secp256k1_fe_sqr(&bzinv2, bzinv);
454 secp256k1_fe_mul(&bzinv3, &bzinv2, bzinv);
455 secp256k1_fe_mul(&r->x, &b->x, &bzinv2);
456 secp256k1_fe_mul(&r->y, &b->y, &bzinv3);
457 secp256k1_fe_set_int(&r->z, 1);
458 return;
459 }
460 r->infinity = 0;
461
470 secp256k1_fe_mul(&az, &a->z, bzinv);
471
472 secp256k1_fe_sqr(&z12, &az);
473 u1 = a->x; secp256k1_fe_normalize_weak(&u1);
474 secp256k1_fe_mul(&u2, &b->x, &z12);
475 s1 = a->y; secp256k1_fe_normalize_weak(&s1);
476 secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &az);
477 secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
478 secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
481 secp256k1_gej_double_var(r, a, NULL);
482 } else {
484 }
485 return;
486 }
487 secp256k1_fe_sqr(&i2, &i);
488 secp256k1_fe_sqr(&h2, &h);
489 secp256k1_fe_mul(&h3, &h, &h2);
490 r->z = a->z; secp256k1_fe_mul(&r->z, &r->z, &h);
491 secp256k1_fe_mul(&t, &u1, &h2);
492 r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
493 secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
494 secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
495 secp256k1_fe_add(&r->y, &h3);
496}
497
498
500 /* Operations: 7 mul, 5 sqr, 4 normalize, 21 mul_int/add/negate/cmov */
501 static const secp256k1_fe fe_1 = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1);
502 secp256k1_fe zz, u1, u2, s1, s2, t, tt, m, n, q, rr;
503 secp256k1_fe m_alt, rr_alt;
504 int infinity, degenerate;
506 VERIFY_CHECK(a->infinity == 0 || a->infinity == 1);
507
558 secp256k1_fe_sqr(&zz, &a->z); /* z = Z1^2 */
559 u1 = a->x; secp256k1_fe_normalize_weak(&u1); /* u1 = U1 = X1*Z2^2 (1) */
560 secp256k1_fe_mul(&u2, &b->x, &zz); /* u2 = U2 = X2*Z1^2 (1) */
561 s1 = a->y; secp256k1_fe_normalize_weak(&s1); /* s1 = S1 = Y1*Z2^3 (1) */
562 secp256k1_fe_mul(&s2, &b->y, &zz); /* s2 = Y2*Z1^2 (1) */
563 secp256k1_fe_mul(&s2, &s2, &a->z); /* s2 = S2 = Y2*Z1^3 (1) */
564 t = u1; secp256k1_fe_add(&t, &u2); /* t = T = U1+U2 (2) */
565 m = s1; secp256k1_fe_add(&m, &s2); /* m = M = S1+S2 (2) */
566 secp256k1_fe_sqr(&rr, &t); /* rr = T^2 (1) */
567 secp256k1_fe_negate(&m_alt, &u2, 1); /* Malt = -X2*Z1^2 */
568 secp256k1_fe_mul(&tt, &u1, &m_alt); /* tt = -U1*U2 (2) */
569 secp256k1_fe_add(&rr, &tt); /* rr = R = T^2-U1*U2 (3) */
572 degenerate = secp256k1_fe_normalizes_to_zero(&m) &
574 /* This only occurs when y1 == -y2 and x1^3 == x2^3, but x1 != x2.
575 * This means either x1 == beta*x2 or beta*x1 == x2, where beta is
576 * a nontrivial cube root of one. In either case, an alternate
577 * non-indeterminate expression for lambda is (y1 - y2)/(x1 - x2),
578 * so we set R/M equal to this. */
579 rr_alt = s1;
580 secp256k1_fe_mul_int(&rr_alt, 2); /* rr = Y1*Z2^3 - Y2*Z1^3 (2) */
581 secp256k1_fe_add(&m_alt, &u1); /* Malt = X1*Z2^2 - X2*Z1^2 */
582
583 secp256k1_fe_cmov(&rr_alt, &rr, !degenerate);
584 secp256k1_fe_cmov(&m_alt, &m, !degenerate);
585 /* Now Ralt / Malt = lambda and is guaranteed not to be 0/0.
586 * From here on out Ralt and Malt represent the numerator
587 * and denominator of lambda; R and M represent the explicit
588 * expressions x1^2 + x2^2 + x1x2 and y1 + y2. */
589 secp256k1_fe_sqr(&n, &m_alt); /* n = Malt^2 (1) */
590 secp256k1_fe_mul(&q, &n, &t); /* q = Q = T*Malt^2 (1) */
591 /* These two lines use the observation that either M == Malt or M == 0,
592 * so M^3 * Malt is either Malt^4 (which is computed by squaring), or
593 * zero (which is "computed" by cmov). So the cost is one squaring
594 * versus two multiplications. */
595 secp256k1_fe_sqr(&n, &n);
596 secp256k1_fe_cmov(&n, &m, degenerate); /* n = M^3 * Malt (2) */
597 secp256k1_fe_sqr(&t, &rr_alt); /* t = Ralt^2 (1) */
598 secp256k1_fe_mul(&r->z, &a->z, &m_alt); /* r->z = Malt*Z (1) */
599 infinity = secp256k1_fe_normalizes_to_zero(&r->z) & ~a->infinity;
600 secp256k1_fe_mul_int(&r->z, 2); /* r->z = Z3 = 2*Malt*Z (2) */
601 secp256k1_fe_negate(&q, &q, 1); /* q = -Q (2) */
602 secp256k1_fe_add(&t, &q); /* t = Ralt^2-Q (3) */
604 r->x = t; /* r->x = Ralt^2-Q (1) */
605 secp256k1_fe_mul_int(&t, 2); /* t = 2*x3 (2) */
606 secp256k1_fe_add(&t, &q); /* t = 2*x3 - Q: (4) */
607 secp256k1_fe_mul(&t, &t, &rr_alt); /* t = Ralt*(2*x3 - Q) (1) */
608 secp256k1_fe_add(&t, &n); /* t = Ralt*(2*x3 - Q) + M^3*Malt (3) */
609 secp256k1_fe_negate(&r->y, &t, 3); /* r->y = Ralt*(Q - 2x3) - M^3*Malt (4) */
611 secp256k1_fe_mul_int(&r->x, 4); /* r->x = X3 = 4*(Ralt^2-Q) */
612 secp256k1_fe_mul_int(&r->y, 4); /* r->y = Y3 = 4*Ralt*(Q - 2x3) - 4*M^3*Malt (4) */
613
615 secp256k1_fe_cmov(&r->x, &b->x, a->infinity);
616 secp256k1_fe_cmov(&r->y, &b->y, a->infinity);
617 secp256k1_fe_cmov(&r->z, &fe_1, a->infinity);
618 r->infinity = infinity;
619}
620
622 /* Operations: 4 mul, 1 sqr */
623 secp256k1_fe zz;
625 secp256k1_fe_sqr(&zz, s);
626 secp256k1_fe_mul(&r->x, &r->x, &zz); /* r->x *= s^2 */
627 secp256k1_fe_mul(&r->y, &r->y, &zz);
628 secp256k1_fe_mul(&r->y, &r->y, s); /* r->y *= s^3 */
629 secp256k1_fe_mul(&r->z, &r->z, s); /* r->z *= s */
630}
631
633 secp256k1_fe x, y;
635 x = a->x;
637 y = a->y;
639 secp256k1_fe_to_storage(&r->x, &x);
640 secp256k1_fe_to_storage(&r->y, &y);
641}
642
644 secp256k1_fe_from_storage(&r->x, &a->x);
645 secp256k1_fe_from_storage(&r->y, &a->y);
646 r->infinity = 0;
647}
648
650 secp256k1_fe_storage_cmov(&r->x, &a->x, flag);
651 secp256k1_fe_storage_cmov(&r->y, &a->y, flag);
652}
653
655 static const secp256k1_fe beta = SECP256K1_FE_CONST(
656 0x7ae96a2bul, 0x657c0710ul, 0x6e64479eul, 0xac3434e9ul,
657 0x9cf04975ul, 0x12f58995ul, 0xc1396c28ul, 0x719501eeul
658 );
659 *r = *a;
660 secp256k1_fe_mul(&r->x, &r->x, &beta);
661}
662
664 secp256k1_fe yz;
665
666 if (a->infinity) {
667 return 0;
668 }
669
670 /* We rely on the fact that the Jacobi symbol of 1 / a->z^3 is the same as
671 * that of a->z. Thus a->y / a->z^3 is a quadratic residue iff a->y * a->z
672 is */
673 secp256k1_fe_mul(&yz, &a->y, &a->z);
674 return secp256k1_fe_is_quad_var(&yz);
675}
676
678#ifdef EXHAUSTIVE_TEST_ORDER
679 secp256k1_gej out;
680 int i;
681
682 /* A very simple EC multiplication ladder that avoids a dependency on ecmult. */
684 for (i = 0; i < 32; ++i) {
685 secp256k1_gej_double_var(&out, &out, NULL);
686 if ((((uint32_t)EXHAUSTIVE_TEST_ORDER) >> (31 - i)) & 1) {
687 secp256k1_gej_add_ge_var(&out, &out, ge, NULL);
688 }
689 }
690 return secp256k1_gej_is_infinity(&out);
691#else
692 (void)ge;
693 /* The real secp256k1 group has cofactor 1, so the subgroup is the entire curve. */
694 return 1;
695#endif
696}
697
698#endif /* SECP256K1_GROUP_IMPL_H */
static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a)
Potentially faster version of secp256k1_fe_inv, without constant-time guarantee.
static int secp256k1_fe_normalizes_to_zero_var(const secp256k1_fe *r)
Verify whether a field element represents zero i.e.
static void secp256k1_fe_normalize_weak(secp256k1_fe *r)
Weakly normalize a field element: reduce its magnitude to 1, but don't fully normalize.
static int secp256k1_fe_is_quad_var(const secp256k1_fe *a)
Checks whether a field element is a quadratic residue.
static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b)
Same as secp256k1_fe_equal, but may be variable time.
static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a)
If a has a square root, it is computed in r and 1 is returned.
static void secp256k1_fe_normalize_var(secp256k1_fe *r)
Normalize a field element, without constant-time guarantee.
static void secp256k1_fe_clear(secp256k1_fe *a)
Sets a field element equal to zero, initializing all fields.
static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a)
Sets a field element to be the (modular) inverse of another.
static void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag)
If flag is true, set *r equal to *a; otherwise leave it.
static void secp256k1_fe_mul_int(secp256k1_fe *r, int a)
Multiplies the passed field element with a small integer constant.
static void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m)
Set a field element equal to the additive inverse of another.
static int secp256k1_fe_is_odd(const secp256k1_fe *a)
Check the "oddness" of a field element.
static void secp256k1_fe_set_int(secp256k1_fe *r, int a)
Set a field element equal to a small (not greater than 0x7FFF), non-negative integer.
static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe *SECP256K1_RESTRICT b)
Sets a field element to be the product of two others.
static int secp256k1_fe_is_zero(const secp256k1_fe *a)
Verify whether a field element is zero.
static void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a)
Convert a field element back from the storage type.
static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a)
Sets a field element to be the square of another.
static int secp256k1_fe_normalizes_to_zero(const secp256k1_fe *r)
Verify whether a field element represents zero i.e.
static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a)
Adds a field element to another.
static void secp256k1_fe_normalize(secp256k1_fe *r)
Field element module.
static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a)
Convert a field element to the storage type.
static void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag)
If flag is true, set *r equal to *a; otherwise leave it.
#define SECP256K1_FE_CONST(d7, d6, d5, d4, d3, d2, d1, d0)
Definition: field_10x26.h:40
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr)
Definition: group_impl.h:312
static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv)
Definition: group_impl.h:442
#define SECP256K1_G_ORDER_13
Definition: group_impl.h:13
static void secp256k1_gej_clear(secp256k1_gej *r)
Definition: group_impl.h:202
static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a)
Definition: group_impl.h:654
static void secp256k1_gej_set_infinity(secp256k1_gej *r)
Definition: group_impl.h:189
static int secp256k1_gej_is_infinity(const secp256k1_gej *a)
Definition: group_impl.h:261
static void secp256k1_ge_clear(secp256k1_ge *r)
Definition: group_impl.h:209
static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y)
Definition: group_impl.h:78
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd)
Definition: group_impl.h:225
static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr)
Definition: group_impl.h:393
static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp256k1_fe *globalz, const secp256k1_gej *a, const secp256k1_fe *zr)
Definition: group_impl.h:164
static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b)
Definition: group_impl.h:499
#define SECP256K1_G
Generator for secp256k1, value 'g' defined in "Standards for Efficient Cryptography" (SEC2) 2....
Definition: group_impl.h:28
static void secp256k1_ge_set_gej_zinv(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zi)
Definition: group_impl.h:67
static int secp256k1_ge_is_valid_var(const secp256k1_ge *a)
Definition: group_impl.h:265
static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a)
Definition: group_impl.h:643
static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr)
Definition: group_impl.h:340
static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *s)
Definition: group_impl.h:621
static int secp256k1_ge_set_xquad(secp256k1_ge *r, const secp256k1_fe *x)
Definition: group_impl.h:215
static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a)
Definition: group_impl.h:244
static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a)
Definition: group_impl.h:94
static int secp256k1_ge_is_in_correct_subgroup(const secp256k1_ge *ge)
Definition: group_impl.h:677
static const secp256k1_fe secp256k1_fe_const_b
Definition: group_impl.h:64
static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a)
Definition: group_impl.h:88
static const secp256k1_ge secp256k1_ge_const_g
Definition: group_impl.h:62
static int secp256k1_ge_is_infinity(const secp256k1_ge *a)
Definition: group_impl.h:84
static void secp256k1_ge_set_infinity(secp256k1_ge *r)
Definition: group_impl.h:196
static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len)
Definition: group_impl.h:122
static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a)
Definition: group_impl.h:237
static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a)
Definition: group_impl.h:632
static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag)
Definition: group_impl.h:649
#define SECP256K1_G_ORDER_199
Definition: group_impl.h:19
static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a)
Definition: group_impl.h:107
static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a)
Definition: group_impl.h:663
static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a)
Definition: group_impl.h:252
static SECP256K1_INLINE void secp256k1_gej_double(secp256k1_gej *r, const secp256k1_gej *a)
Definition: group_impl.h:278
#define VERIFY_CHECK(cond)
Definition: util.h:95
#define SECP256K1_INLINE
Definition: secp256k1.h:127
secp256k1_fe_storage x
Definition: group.h:34
secp256k1_fe_storage y
Definition: group.h:35
A group element of the secp256k1 curve, in affine coordinates.
Definition: group.h:13
int infinity
Definition: group.h:16
secp256k1_fe x
Definition: group.h:14
secp256k1_fe y
Definition: group.h:15
A group element of the secp256k1 curve, in jacobian coordinates.
Definition: group.h:23
secp256k1_fe y
Definition: group.h:25
secp256k1_fe x
Definition: group.h:24
int infinity
Definition: group.h:27
secp256k1_fe z
Definition: group.h:26
#define EXHAUSTIVE_TEST_ORDER