Bitcoin ABC 0.32.4
P2P Digital Currency
modinv64_impl.h
Go to the documentation of this file.
1/***********************************************************************
2 * Copyright (c) 2020 Peter Dettman *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5 **********************************************************************/
6
7#ifndef SECP256K1_MODINV64_IMPL_H
8#define SECP256K1_MODINV64_IMPL_H
9
10#include "modinv64.h"
11
12#include "util.h"
13
14/* This file implements modular inversion based on the paper "Fast constant-time gcd computation and
15 * modular inversion" by Daniel J. Bernstein and Bo-Yin Yang.
16 *
17 * For an explanation of the algorithm, see doc/safegcd_implementation.md. This file contains an
18 * implementation for N=62, using 62-bit signed limbs represented as int64_t.
19 */
20
21#ifdef VERIFY
22/* Helper function to compute the absolute value of an int64_t.
23 * (we don't use abs/labs/llabs as it depends on the int sizes). */
24static int64_t secp256k1_modinv64_abs(int64_t v) {
25 VERIFY_CHECK(v > INT64_MIN);
26 if (v < 0) return -v;
27 return v;
28}
29
30static const secp256k1_modinv64_signed62 SECP256K1_SIGNED62_ONE = {{1}};
31
32/* Compute a*factor and put it in r. All but the top limb in r will be in range [0,2^62). */
33static void secp256k1_modinv64_mul_62(secp256k1_modinv64_signed62 *r, const secp256k1_modinv64_signed62 *a, int alen, int64_t factor) {
34 const int64_t M62 = (int64_t)(UINT64_MAX >> 2);
35 int128_t c = 0;
36 int i;
37 for (i = 0; i < 4; ++i) {
38 if (i < alen) c += (int128_t)a->v[i] * factor;
39 r->v[i] = (int64_t)c & M62; c >>= 62;
40 }
41 if (4 < alen) c += (int128_t)a->v[4] * factor;
42 VERIFY_CHECK(c == (int64_t)c);
43 r->v[4] = (int64_t)c;
44}
45
46/* Return -1 for a<b*factor, 0 for a==b*factor, 1 for a>b*factor. A has alen limbs; b has 5. */
47static int secp256k1_modinv64_mul_cmp_62(const secp256k1_modinv64_signed62 *a, int alen, const secp256k1_modinv64_signed62 *b, int64_t factor) {
48 int i;
50 secp256k1_modinv64_mul_62(&am, a, alen, 1); /* Normalize all but the top limb of a. */
51 secp256k1_modinv64_mul_62(&bm, b, 5, factor);
52 for (i = 0; i < 4; ++i) {
53 /* Verify that all but the top limb of a and b are normalized. */
54 VERIFY_CHECK(am.v[i] >> 62 == 0);
55 VERIFY_CHECK(bm.v[i] >> 62 == 0);
56 }
57 for (i = 4; i >= 0; --i) {
58 if (am.v[i] < bm.v[i]) return -1;
59 if (am.v[i] > bm.v[i]) return 1;
60 }
61 return 0;
62}
63#endif
64
65/* Take as input a signed62 number in range (-2*modulus,modulus), and add a multiple of the modulus
66 * to it to bring it to range [0,modulus). If sign < 0, the input will also be negated in the
67 * process. The input must have limbs in range (-2^62,2^62). The output will have limbs in range
68 * [0,2^62). */
70 const int64_t M62 = (int64_t)(UINT64_MAX >> 2);
71 int64_t r0 = r->v[0], r1 = r->v[1], r2 = r->v[2], r3 = r->v[3], r4 = r->v[4];
72 volatile int64_t cond_add, cond_negate;
73
74#ifdef VERIFY
75 /* Verify that all limbs are in range (-2^62,2^62). */
76 int i;
77 for (i = 0; i < 5; ++i) {
78 VERIFY_CHECK(r->v[i] >= -M62);
79 VERIFY_CHECK(r->v[i] <= M62);
80 }
81 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, -2) > 0); /* r > -2*modulus */
82 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, 1) < 0); /* r < modulus */
83#endif
84
85 /* In a first step, add the modulus if the input is negative, and then negate if requested.
86 * This brings r from range (-2*modulus,modulus) to range (-modulus,modulus). As all input
87 * limbs are in range (-2^62,2^62), this cannot overflow an int64_t. Note that the right
88 * shifts below are signed sign-extending shifts (see assumptions.h for tests that that is
89 * indeed the behavior of the right shift operator). */
90 cond_add = r4 >> 63;
91 r0 += modinfo->modulus.v[0] & cond_add;
92 r1 += modinfo->modulus.v[1] & cond_add;
93 r2 += modinfo->modulus.v[2] & cond_add;
94 r3 += modinfo->modulus.v[3] & cond_add;
95 r4 += modinfo->modulus.v[4] & cond_add;
96 cond_negate = sign >> 63;
97 r0 = (r0 ^ cond_negate) - cond_negate;
98 r1 = (r1 ^ cond_negate) - cond_negate;
99 r2 = (r2 ^ cond_negate) - cond_negate;
100 r3 = (r3 ^ cond_negate) - cond_negate;
101 r4 = (r4 ^ cond_negate) - cond_negate;
102 /* Propagate the top bits, to bring limbs back to range (-2^62,2^62). */
103 r1 += r0 >> 62; r0 &= M62;
104 r2 += r1 >> 62; r1 &= M62;
105 r3 += r2 >> 62; r2 &= M62;
106 r4 += r3 >> 62; r3 &= M62;
107
108 /* In a second step add the modulus again if the result is still negative, bringing
109 * r to range [0,modulus). */
110 cond_add = r4 >> 63;
111 r0 += modinfo->modulus.v[0] & cond_add;
112 r1 += modinfo->modulus.v[1] & cond_add;
113 r2 += modinfo->modulus.v[2] & cond_add;
114 r3 += modinfo->modulus.v[3] & cond_add;
115 r4 += modinfo->modulus.v[4] & cond_add;
116 /* And propagate again. */
117 r1 += r0 >> 62; r0 &= M62;
118 r2 += r1 >> 62; r1 &= M62;
119 r3 += r2 >> 62; r2 &= M62;
120 r4 += r3 >> 62; r3 &= M62;
121
122 r->v[0] = r0;
123 r->v[1] = r1;
124 r->v[2] = r2;
125 r->v[3] = r3;
126 r->v[4] = r4;
127
128#ifdef VERIFY
129 VERIFY_CHECK(r0 >> 62 == 0);
130 VERIFY_CHECK(r1 >> 62 == 0);
131 VERIFY_CHECK(r2 >> 62 == 0);
132 VERIFY_CHECK(r3 >> 62 == 0);
133 VERIFY_CHECK(r4 >> 62 == 0);
134 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, 0) >= 0); /* r >= 0 */
135 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, 1) < 0); /* r < modulus */
136#endif
137}
138
139/* Data type for transition matrices (see section 3 of explanation).
140 *
141 * t = [ u v ]
142 * [ q r ]
143 */
144typedef struct {
145 int64_t u, v, q, r;
147
148/* Compute the transition matrix and eta for 59 divsteps (where zeta=-(delta+1/2)).
149 * Note that the transformation matrix is scaled by 2^62 and not 2^59.
150 *
151 * Input: zeta: initial zeta
152 * f0: bottom limb of initial f
153 * g0: bottom limb of initial g
154 * Output: t: transition matrix
155 * Return: final zeta
156 *
157 * Implements the divsteps_n_matrix function from the explanation.
158 */
159static int64_t secp256k1_modinv64_divsteps_59(int64_t zeta, uint64_t f0, uint64_t g0, secp256k1_modinv64_trans2x2 *t) {
160 /* u,v,q,r are the elements of the transformation matrix being built up,
161 * starting with the identity matrix times 8 (because the caller expects
162 * a result scaled by 2^62). Semantically they are signed integers
163 * in range [-2^62,2^62], but here represented as unsigned mod 2^64. This
164 * permits left shifting (which is UB for negative numbers). The range
165 * being inside [-2^63,2^63) means that casting to signed works correctly.
166 */
167 uint64_t u = 8, v = 0, q = 0, r = 8;
168 volatile uint64_t c1, c2;
169 uint64_t mask1, mask2, f = f0, g = g0, x, y, z;
170 int i;
171
172 for (i = 3; i < 62; ++i) {
173 VERIFY_CHECK((f & 1) == 1); /* f must always be odd */
174 VERIFY_CHECK((u * f0 + v * g0) == f << i);
175 VERIFY_CHECK((q * f0 + r * g0) == g << i);
176 /* Compute conditional masks for (zeta < 0) and for (g & 1). */
177 c1 = zeta >> 63;
178 mask1 = c1;
179 c2 = g & 1;
180 mask2 = -c2;
181 /* Compute x,y,z, conditionally negated versions of f,u,v. */
182 x = (f ^ mask1) - mask1;
183 y = (u ^ mask1) - mask1;
184 z = (v ^ mask1) - mask1;
185 /* Conditionally add x,y,z to g,q,r. */
186 g += x & mask2;
187 q += y & mask2;
188 r += z & mask2;
189 /* In what follows, c1 is a condition mask for (zeta < 0) and (g & 1). */
190 mask1 &= mask2;
191 /* Conditionally change zeta into -zeta-2 or zeta-1. */
192 zeta = (zeta ^ mask1) - 1;
193 /* Conditionally add g,q,r to f,u,v. */
194 f += g & mask1;
195 u += q & mask1;
196 v += r & mask1;
197 /* Shifts */
198 g >>= 1;
199 u <<= 1;
200 v <<= 1;
201 /* Bounds on zeta that follow from the bounds on iteration count (max 10*59 divsteps). */
202 VERIFY_CHECK(zeta >= -591 && zeta <= 591);
203 }
204 /* Return data in t and return value. */
205 t->u = (int64_t)u;
206 t->v = (int64_t)v;
207 t->q = (int64_t)q;
208 t->r = (int64_t)r;
209 /* The determinant of t must be a power of two. This guarantees that multiplication with t
210 * does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
211 * will be divided out again). As each divstep's individual matrix has determinant 2, the
212 * aggregate of 59 of them will have determinant 2^59. Multiplying with the initial
213 * 8*identity (which has determinant 2^6) means the overall outputs has determinant
214 * 2^65. */
215 VERIFY_CHECK((int128_t)t->u * t->r - (int128_t)t->v * t->q == ((int128_t)1) << 65);
216 return zeta;
217}
218
219/* Compute the transition matrix and eta for 62 divsteps (variable time, eta=-delta).
220 *
221 * Input: eta: initial eta
222 * f0: bottom limb of initial f
223 * g0: bottom limb of initial g
224 * Output: t: transition matrix
225 * Return: final eta
226 *
227 * Implements the divsteps_n_matrix_var function from the explanation.
228 */
229static int64_t secp256k1_modinv64_divsteps_62_var(int64_t eta, uint64_t f0, uint64_t g0, secp256k1_modinv64_trans2x2 *t) {
230 /* Transformation matrix; see comments in secp256k1_modinv64_divsteps_62. */
231 uint64_t u = 1, v = 0, q = 0, r = 1;
232 uint64_t f = f0, g = g0, m;
233 uint32_t w;
234 int i = 62, limit, zeros;
235
236 for (;;) {
237 /* Use a sentinel bit to count zeros only up to i. */
238 zeros = secp256k1_ctz64_var(g | (UINT64_MAX << i));
239 /* Perform zeros divsteps at once; they all just divide g by two. */
240 g >>= zeros;
241 u <<= zeros;
242 v <<= zeros;
243 eta -= zeros;
244 i -= zeros;
245 /* We're done once we've done 62 divsteps. */
246 if (i == 0) break;
247 VERIFY_CHECK((f & 1) == 1);
248 VERIFY_CHECK((g & 1) == 1);
249 VERIFY_CHECK((u * f0 + v * g0) == f << (62 - i));
250 VERIFY_CHECK((q * f0 + r * g0) == g << (62 - i));
251 /* Bounds on eta that follow from the bounds on iteration count (max 12*62 divsteps). */
252 VERIFY_CHECK(eta >= -745 && eta <= 745);
253 /* If eta is negative, negate it and replace f,g with g,-f. */
254 if (eta < 0) {
255 uint64_t tmp;
256 eta = -eta;
257 tmp = f; f = g; g = -tmp;
258 tmp = u; u = q; q = -tmp;
259 tmp = v; v = r; r = -tmp;
260 /* Use a formula to cancel out up to 6 bits of g. Also, no more than i can be cancelled
261 * out (as we'd be done before that point), and no more than eta+1 can be done as its
262 * will flip again once that happens. */
263 limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
264 VERIFY_CHECK(limit > 0 && limit <= 62);
265 /* m is a mask for the bottom min(limit, 6) bits. */
266 m = (UINT64_MAX >> (64 - limit)) & 63U;
267 /* Find what multiple of f must be added to g to cancel its bottom min(limit, 6)
268 * bits. */
269 w = (f * g * (f * f - 2)) & m;
270 } else {
271 /* In this branch, use a simpler formula that only lets us cancel up to 4 bits of g, as
272 * eta tends to be smaller here. */
273 limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
274 VERIFY_CHECK(limit > 0 && limit <= 62);
275 /* m is a mask for the bottom min(limit, 4) bits. */
276 m = (UINT64_MAX >> (64 - limit)) & 15U;
277 /* Find what multiple of f must be added to g to cancel its bottom min(limit, 4)
278 * bits. */
279 w = f + (((f + 1) & 4) << 1);
280 w = (-w * g) & m;
281 }
282 g += f * w;
283 q += u * w;
284 r += v * w;
285 VERIFY_CHECK((g & m) == 0);
286 }
287 /* Return data in t and return value. */
288 t->u = (int64_t)u;
289 t->v = (int64_t)v;
290 t->q = (int64_t)q;
291 t->r = (int64_t)r;
292 /* The determinant of t must be a power of two. This guarantees that multiplication with t
293 * does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
294 * will be divided out again). As each divstep's individual matrix has determinant 2, the
295 * aggregate of 62 of them will have determinant 2^62. */
296 VERIFY_CHECK((int128_t)t->u * t->r - (int128_t)t->v * t->q == ((int128_t)1) << 62);
297 return eta;
298}
299
300/* Compute (t/2^62) * [d, e] mod modulus, where t is a transition matrix scaled by 2^62.
301 *
302 * On input and output, d and e are in range (-2*modulus,modulus). All output limbs will be in range
303 * (-2^62,2^62).
304 *
305 * This implements the update_de function from the explanation.
306 */
308 const int64_t M62 = (int64_t)(UINT64_MAX >> 2);
309 const int64_t d0 = d->v[0], d1 = d->v[1], d2 = d->v[2], d3 = d->v[3], d4 = d->v[4];
310 const int64_t e0 = e->v[0], e1 = e->v[1], e2 = e->v[2], e3 = e->v[3], e4 = e->v[4];
311 const int64_t u = t->u, v = t->v, q = t->q, r = t->r;
312 int64_t md, me, sd, se;
313 int128_t cd, ce;
314#ifdef VERIFY
315 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, -2) > 0); /* d > -2*modulus */
316 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, 1) < 0); /* d < modulus */
317 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, -2) > 0); /* e > -2*modulus */
318 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, 1) < 0); /* e < modulus */
319 VERIFY_CHECK((secp256k1_modinv64_abs(u) + secp256k1_modinv64_abs(v)) >= 0); /* |u|+|v| doesn't overflow */
320 VERIFY_CHECK((secp256k1_modinv64_abs(q) + secp256k1_modinv64_abs(r)) >= 0); /* |q|+|r| doesn't overflow */
321 VERIFY_CHECK((secp256k1_modinv64_abs(u) + secp256k1_modinv64_abs(v)) <= M62 + 1); /* |u|+|v| <= 2^62 */
322 VERIFY_CHECK((secp256k1_modinv64_abs(q) + secp256k1_modinv64_abs(r)) <= M62 + 1); /* |q|+|r| <= 2^62 */
323#endif
324 /* [md,me] start as zero; plus [u,q] if d is negative; plus [v,r] if e is negative. */
325 sd = d4 >> 63;
326 se = e4 >> 63;
327 md = (u & sd) + (v & se);
328 me = (q & sd) + (r & se);
329 /* Begin computing t*[d,e]. */
330 cd = (int128_t)u * d0 + (int128_t)v * e0;
331 ce = (int128_t)q * d0 + (int128_t)r * e0;
332 /* Correct md,me so that t*[d,e]+modulus*[md,me] has 62 zero bottom bits. */
333 md -= (modinfo->modulus_inv62 * (uint64_t)cd + md) & M62;
334 me -= (modinfo->modulus_inv62 * (uint64_t)ce + me) & M62;
335 /* Update the beginning of computation for t*[d,e]+modulus*[md,me] now md,me are known. */
336 cd += (int128_t)modinfo->modulus.v[0] * md;
337 ce += (int128_t)modinfo->modulus.v[0] * me;
338 /* Verify that the low 62 bits of the computation are indeed zero, and then throw them away. */
339 VERIFY_CHECK(((int64_t)cd & M62) == 0); cd >>= 62;
340 VERIFY_CHECK(((int64_t)ce & M62) == 0); ce >>= 62;
341 /* Compute limb 1 of t*[d,e]+modulus*[md,me], and store it as output limb 0 (= down shift). */
342 cd += (int128_t)u * d1 + (int128_t)v * e1;
343 ce += (int128_t)q * d1 + (int128_t)r * e1;
344 if (modinfo->modulus.v[1]) { /* Optimize for the case where limb of modulus is zero. */
345 cd += (int128_t)modinfo->modulus.v[1] * md;
346 ce += (int128_t)modinfo->modulus.v[1] * me;
347 }
348 d->v[0] = (int64_t)cd & M62; cd >>= 62;
349 e->v[0] = (int64_t)ce & M62; ce >>= 62;
350 /* Compute limb 2 of t*[d,e]+modulus*[md,me], and store it as output limb 1. */
351 cd += (int128_t)u * d2 + (int128_t)v * e2;
352 ce += (int128_t)q * d2 + (int128_t)r * e2;
353 if (modinfo->modulus.v[2]) { /* Optimize for the case where limb of modulus is zero. */
354 cd += (int128_t)modinfo->modulus.v[2] * md;
355 ce += (int128_t)modinfo->modulus.v[2] * me;
356 }
357 d->v[1] = (int64_t)cd & M62; cd >>= 62;
358 e->v[1] = (int64_t)ce & M62; ce >>= 62;
359 /* Compute limb 3 of t*[d,e]+modulus*[md,me], and store it as output limb 2. */
360 cd += (int128_t)u * d3 + (int128_t)v * e3;
361 ce += (int128_t)q * d3 + (int128_t)r * e3;
362 if (modinfo->modulus.v[3]) { /* Optimize for the case where limb of modulus is zero. */
363 cd += (int128_t)modinfo->modulus.v[3] * md;
364 ce += (int128_t)modinfo->modulus.v[3] * me;
365 }
366 d->v[2] = (int64_t)cd & M62; cd >>= 62;
367 e->v[2] = (int64_t)ce & M62; ce >>= 62;
368 /* Compute limb 4 of t*[d,e]+modulus*[md,me], and store it as output limb 3. */
369 cd += (int128_t)u * d4 + (int128_t)v * e4;
370 ce += (int128_t)q * d4 + (int128_t)r * e4;
371 cd += (int128_t)modinfo->modulus.v[4] * md;
372 ce += (int128_t)modinfo->modulus.v[4] * me;
373 d->v[3] = (int64_t)cd & M62; cd >>= 62;
374 e->v[3] = (int64_t)ce & M62; ce >>= 62;
375 /* What remains is limb 5 of t*[d,e]+modulus*[md,me]; store it as output limb 4. */
376 d->v[4] = (int64_t)cd;
377 e->v[4] = (int64_t)ce;
378#ifdef VERIFY
379 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, -2) > 0); /* d > -2*modulus */
380 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, 1) < 0); /* d < modulus */
381 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, -2) > 0); /* e > -2*modulus */
382 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, 1) < 0); /* e < modulus */
383#endif
384}
385
386/* Compute (t/2^62) * [f, g], where t is a transition matrix scaled by 2^62.
387 *
388 * This implements the update_fg function from the explanation.
389 */
391 const int64_t M62 = (int64_t)(UINT64_MAX >> 2);
392 const int64_t f0 = f->v[0], f1 = f->v[1], f2 = f->v[2], f3 = f->v[3], f4 = f->v[4];
393 const int64_t g0 = g->v[0], g1 = g->v[1], g2 = g->v[2], g3 = g->v[3], g4 = g->v[4];
394 const int64_t u = t->u, v = t->v, q = t->q, r = t->r;
395 int128_t cf, cg;
396 /* Start computing t*[f,g]. */
397 cf = (int128_t)u * f0 + (int128_t)v * g0;
398 cg = (int128_t)q * f0 + (int128_t)r * g0;
399 /* Verify that the bottom 62 bits of the result are zero, and then throw them away. */
400 VERIFY_CHECK(((int64_t)cf & M62) == 0); cf >>= 62;
401 VERIFY_CHECK(((int64_t)cg & M62) == 0); cg >>= 62;
402 /* Compute limb 1 of t*[f,g], and store it as output limb 0 (= down shift). */
403 cf += (int128_t)u * f1 + (int128_t)v * g1;
404 cg += (int128_t)q * f1 + (int128_t)r * g1;
405 f->v[0] = (int64_t)cf & M62; cf >>= 62;
406 g->v[0] = (int64_t)cg & M62; cg >>= 62;
407 /* Compute limb 2 of t*[f,g], and store it as output limb 1. */
408 cf += (int128_t)u * f2 + (int128_t)v * g2;
409 cg += (int128_t)q * f2 + (int128_t)r * g2;
410 f->v[1] = (int64_t)cf & M62; cf >>= 62;
411 g->v[1] = (int64_t)cg & M62; cg >>= 62;
412 /* Compute limb 3 of t*[f,g], and store it as output limb 2. */
413 cf += (int128_t)u * f3 + (int128_t)v * g3;
414 cg += (int128_t)q * f3 + (int128_t)r * g3;
415 f->v[2] = (int64_t)cf & M62; cf >>= 62;
416 g->v[2] = (int64_t)cg & M62; cg >>= 62;
417 /* Compute limb 4 of t*[f,g], and store it as output limb 3. */
418 cf += (int128_t)u * f4 + (int128_t)v * g4;
419 cg += (int128_t)q * f4 + (int128_t)r * g4;
420 f->v[3] = (int64_t)cf & M62; cf >>= 62;
421 g->v[3] = (int64_t)cg & M62; cg >>= 62;
422 /* What remains is limb 5 of t*[f,g]; store it as output limb 4. */
423 f->v[4] = (int64_t)cf;
424 g->v[4] = (int64_t)cg;
425}
426
427/* Compute (t/2^62) * [f, g], where t is a transition matrix for 62 divsteps.
428 *
429 * Version that operates on a variable number of limbs in f and g.
430 *
431 * This implements the update_fg function from the explanation.
432 */
434 const int64_t M62 = (int64_t)(UINT64_MAX >> 2);
435 const int64_t u = t->u, v = t->v, q = t->q, r = t->r;
436 int64_t fi, gi;
437 int128_t cf, cg;
438 int i;
439 VERIFY_CHECK(len > 0);
440 /* Start computing t*[f,g]. */
441 fi = f->v[0];
442 gi = g->v[0];
443 cf = (int128_t)u * fi + (int128_t)v * gi;
444 cg = (int128_t)q * fi + (int128_t)r * gi;
445 /* Verify that the bottom 62 bits of the result are zero, and then throw them away. */
446 VERIFY_CHECK(((int64_t)cf & M62) == 0); cf >>= 62;
447 VERIFY_CHECK(((int64_t)cg & M62) == 0); cg >>= 62;
448 /* Now iteratively compute limb i=1..len of t*[f,g], and store them in output limb i-1 (shifting
449 * down by 62 bits). */
450 for (i = 1; i < len; ++i) {
451 fi = f->v[i];
452 gi = g->v[i];
453 cf += (int128_t)u * fi + (int128_t)v * gi;
454 cg += (int128_t)q * fi + (int128_t)r * gi;
455 f->v[i - 1] = (int64_t)cf & M62; cf >>= 62;
456 g->v[i - 1] = (int64_t)cg & M62; cg >>= 62;
457 }
458 /* What remains is limb (len) of t*[f,g]; store it as output limb (len-1). */
459 f->v[len - 1] = (int64_t)cf;
460 g->v[len - 1] = (int64_t)cg;
461}
462
463/* Compute the inverse of x modulo modinfo->modulus, and replace x with it (constant time in x). */
465 /* Start with d=0, e=1, f=modulus, g=x, zeta=-1. */
466 secp256k1_modinv64_signed62 d = {{0, 0, 0, 0, 0}};
467 secp256k1_modinv64_signed62 e = {{1, 0, 0, 0, 0}};
470 int i;
471 int64_t zeta = -1; /* zeta = -(delta+1/2); delta starts at 1/2. */
472
473 /* Do 10 iterations of 59 divsteps each = 590 divsteps. This suffices for 256-bit inputs. */
474 for (i = 0; i < 10; ++i) {
475 /* Compute transition matrix and new zeta after 59 divsteps. */
477 zeta = secp256k1_modinv64_divsteps_59(zeta, f.v[0], g.v[0], &t);
478 /* Update d,e using that transition matrix. */
479 secp256k1_modinv64_update_de_62(&d, &e, &t, modinfo);
480 /* Update f,g using that transition matrix. */
481#ifdef VERIFY
482 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, -1) > 0); /* f > -modulus */
483 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, 1) <= 0); /* f <= modulus */
484 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, -1) > 0); /* g > -modulus */
485 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, 1) < 0); /* g < modulus */
486#endif
488#ifdef VERIFY
489 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, -1) > 0); /* f > -modulus */
490 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, 1) <= 0); /* f <= modulus */
491 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, -1) > 0); /* g > -modulus */
492 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, 1) < 0); /* g < modulus */
493#endif
494 }
495
496 /* At this point sufficient iterations have been performed that g must have reached 0
497 * and (if g was not originally 0) f must now equal +/- GCD of the initial f, g
498 * values i.e. +/- 1, and d now contains +/- the modular inverse. */
499#ifdef VERIFY
500 /* g == 0 */
501 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &SECP256K1_SIGNED62_ONE, 0) == 0);
502 /* |f| == 1, or (x == 0 and d == 0 and |f|=modulus) */
503 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &SECP256K1_SIGNED62_ONE, -1) == 0 ||
504 secp256k1_modinv64_mul_cmp_62(&f, 5, &SECP256K1_SIGNED62_ONE, 1) == 0 ||
505 (secp256k1_modinv64_mul_cmp_62(x, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 &&
506 secp256k1_modinv64_mul_cmp_62(&d, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 &&
507 (secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, 1) == 0 ||
508 secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, -1) == 0)));
509#endif
510
511 /* Optionally negate d, normalize to [0,modulus), and return it. */
512 secp256k1_modinv64_normalize_62(&d, f.v[4], modinfo);
513 *x = d;
514}
515
516/* Compute the inverse of x modulo modinfo->modulus, and replace x with it (variable time). */
518 /* Start with d=0, e=1, f=modulus, g=x, eta=-1. */
519 secp256k1_modinv64_signed62 d = {{0, 0, 0, 0, 0}};
520 secp256k1_modinv64_signed62 e = {{1, 0, 0, 0, 0}};
523#ifdef VERIFY
524 int i = 0;
525#endif
526 int j, len = 5;
527 int64_t eta = -1; /* eta = -delta; delta is initially 1 */
528 int64_t cond, fn, gn;
529
530 /* Do iterations of 62 divsteps each until g=0. */
531 while (1) {
532 /* Compute transition matrix and new eta after 62 divsteps. */
534 eta = secp256k1_modinv64_divsteps_62_var(eta, f.v[0], g.v[0], &t);
535 /* Update d,e using that transition matrix. */
536 secp256k1_modinv64_update_de_62(&d, &e, &t, modinfo);
537 /* Update f,g using that transition matrix. */
538#ifdef VERIFY
539 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, -1) > 0); /* f > -modulus */
540 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
541 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, -1) > 0); /* g > -modulus */
542 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
543#endif
545 /* If the bottom limb of g is zero, there is a chance that g=0. */
546 if (g.v[0] == 0) {
547 cond = 0;
548 /* Check if the other limbs are also 0. */
549 for (j = 1; j < len; ++j) {
550 cond |= g.v[j];
551 }
552 /* If so, we're done. */
553 if (cond == 0) break;
554 }
555
556 /* Determine if len>1 and limb (len-1) of both f and g is 0 or -1. */
557 fn = f.v[len - 1];
558 gn = g.v[len - 1];
559 cond = ((int64_t)len - 2) >> 63;
560 cond |= fn ^ (fn >> 63);
561 cond |= gn ^ (gn >> 63);
562 /* If so, reduce length, propagating the sign of f and g's top limb into the one below. */
563 if (cond == 0) {
564 f.v[len - 2] |= (uint64_t)fn << 62;
565 g.v[len - 2] |= (uint64_t)gn << 62;
566 --len;
567 }
568#ifdef VERIFY
569 VERIFY_CHECK(++i < 12); /* We should never need more than 12*62 = 744 divsteps */
570 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, -1) > 0); /* f > -modulus */
571 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
572 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, -1) > 0); /* g > -modulus */
573 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
574#endif
575 }
576
577 /* At this point g is 0 and (if g was not originally 0) f must now equal +/- GCD of
578 * the initial f, g values i.e. +/- 1, and d now contains +/- the modular inverse. */
579#ifdef VERIFY
580 /* g == 0 */
581 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &SECP256K1_SIGNED62_ONE, 0) == 0);
582 /* |f| == 1, or (x == 0 and d == 0 and |f|=modulus) */
583 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &SECP256K1_SIGNED62_ONE, -1) == 0 ||
584 secp256k1_modinv64_mul_cmp_62(&f, len, &SECP256K1_SIGNED62_ONE, 1) == 0 ||
585 (secp256k1_modinv64_mul_cmp_62(x, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 &&
586 secp256k1_modinv64_mul_cmp_62(&d, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 &&
587 (secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) == 0 ||
588 secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, -1) == 0)));
589#endif
590
591 /* Optionally negate d, normalize to [0,modulus), and return it. */
592 secp256k1_modinv64_normalize_62(&d, f.v[len - 1], modinfo);
593 *x = d;
594}
595
596#endif /* SECP256K1_MODINV64_IMPL_H */
static int64_t secp256k1_modinv64_divsteps_62_var(int64_t eta, uint64_t f0, uint64_t g0, secp256k1_modinv64_trans2x2 *t)
static void secp256k1_modinv64_normalize_62(secp256k1_modinv64_signed62 *r, int64_t sign, const secp256k1_modinv64_modinfo *modinfo)
Definition: modinv64_impl.h:69
static void secp256k1_modinv64(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo)
static void secp256k1_modinv64_var(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo)
static void secp256k1_modinv64_update_fg_62_var(int len, secp256k1_modinv64_signed62 *f, secp256k1_modinv64_signed62 *g, const secp256k1_modinv64_trans2x2 *t)
static int64_t secp256k1_modinv64_divsteps_59(int64_t zeta, uint64_t f0, uint64_t g0, secp256k1_modinv64_trans2x2 *t)
static void secp256k1_modinv64_update_fg_62(secp256k1_modinv64_signed62 *f, secp256k1_modinv64_signed62 *g, const secp256k1_modinv64_trans2x2 *t)
static void secp256k1_modinv64_update_de_62(secp256k1_modinv64_signed62 *d, secp256k1_modinv64_signed62 *e, const secp256k1_modinv64_trans2x2 *t, const secp256k1_modinv64_modinfo *modinfo)
static SECP256K1_INLINE int secp256k1_ctz64_var(uint64_t x)
Definition: util.h:327
#define VERIFY_CHECK(cond)
Definition: util.h:68
secp256k1_modinv64_signed62 modulus
Definition: modinv64.h:29