7#ifndef SECP256K1_SCALAR_REPR_IMPL_H
8#define SECP256K1_SCALAR_REPR_IMPL_H
13#define SECP256K1_N_0 ((uint64_t)0xBFD25E8CD0364141ULL)
14#define SECP256K1_N_1 ((uint64_t)0xBAAEDCE6AF48A03BULL)
15#define SECP256K1_N_2 ((uint64_t)0xFFFFFFFFFFFFFFFEULL)
16#define SECP256K1_N_3 ((uint64_t)0xFFFFFFFFFFFFFFFFULL)
19#define SECP256K1_N_C_0 (~SECP256K1_N_0 + 1)
20#define SECP256K1_N_C_1 (~SECP256K1_N_1)
21#define SECP256K1_N_C_2 (1)
24#define SECP256K1_N_H_0 ((uint64_t)0xDFE92F46681B20A0ULL)
25#define SECP256K1_N_H_1 ((uint64_t)0x5D576E7357A4501DULL)
26#define SECP256K1_N_H_2 ((uint64_t)0xFFFFFFFFFFFFFFFFULL)
27#define SECP256K1_N_H_3 ((uint64_t)0x7FFFFFFFFFFFFFFFULL)
45 return (a->
d[offset >> 6] >> (offset & 0x3F)) & ((((uint64_t)1) <<
count) - 1);
51 if ((offset +
count - 1) >> 6 == offset >> 6) {
55 return ((a->
d[offset >> 6] >> (offset & 0x3F)) | (a->
d[(offset >> 6) + 1] << (64 - (offset & 0x3F)))) & ((((uint64_t)1) <<
count) - 1);
75 r->
d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
77 r->
d[1] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
79 r->
d[2] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
80 t += (uint64_t)r->
d[3];
81 r->
d[3] = t & 0xFFFFFFFFFFFFFFFFULL;
87 uint128_t t = (uint128_t)a->
d[0] + b->
d[0];
88 r->
d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
89 t += (uint128_t)a->
d[1] + b->
d[1];
90 r->
d[1] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
91 t += (uint128_t)a->
d[2] + b->
d[2];
92 r->
d[2] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
93 t += (uint128_t)a->
d[3] + b->
d[3];
94 r->
d[3] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
103 volatile int vflag = flag;
105 bit += ((uint32_t) vflag - 1) & 0x100;
106 t = (uint128_t)r->
d[0] + (((uint64_t)((bit >> 6) == 0)) << (bit & 0x3F));
107 r->
d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
108 t += (uint128_t)r->
d[1] + (((uint64_t)((bit >> 6) == 1)) << (bit & 0x3F));
109 r->
d[1] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
110 t += (uint128_t)r->
d[2] + (((uint64_t)((bit >> 6) == 2)) << (bit & 0x3F));
111 r->
d[2] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
112 t += (uint128_t)r->
d[3] + (((uint64_t)((bit >> 6) == 3)) << (bit & 0x3F));
113 r->
d[3] = t & 0xFFFFFFFFFFFFFFFFULL;
122 r->
d[0] = (uint64_t)b32[31] | (uint64_t)b32[30] << 8 | (uint64_t)b32[29] << 16 | (uint64_t)b32[28] << 24 | (uint64_t)b32[27] << 32 | (uint64_t)b32[26] << 40 | (uint64_t)b32[25] << 48 | (uint64_t)b32[24] << 56;
123 r->
d[1] = (uint64_t)b32[23] | (uint64_t)b32[22] << 8 | (uint64_t)b32[21] << 16 | (uint64_t)b32[20] << 24 | (uint64_t)b32[19] << 32 | (uint64_t)b32[18] << 40 | (uint64_t)b32[17] << 48 | (uint64_t)b32[16] << 56;
124 r->
d[2] = (uint64_t)b32[15] | (uint64_t)b32[14] << 8 | (uint64_t)b32[13] << 16 | (uint64_t)b32[12] << 24 | (uint64_t)b32[11] << 32 | (uint64_t)b32[10] << 40 | (uint64_t)b32[9] << 48 | (uint64_t)b32[8] << 56;
125 r->
d[3] = (uint64_t)b32[7] | (uint64_t)b32[6] << 8 | (uint64_t)b32[5] << 16 | (uint64_t)b32[4] << 24 | (uint64_t)b32[3] << 32 | (uint64_t)b32[2] << 40 | (uint64_t)b32[1] << 48 | (uint64_t)b32[0] << 56;
133 bin[0] = a->
d[3] >> 56; bin[1] = a->
d[3] >> 48; bin[2] = a->
d[3] >> 40; bin[3] = a->
d[3] >> 32; bin[4] = a->
d[3] >> 24; bin[5] = a->
d[3] >> 16; bin[6] = a->
d[3] >> 8; bin[7] = a->
d[3];
134 bin[8] = a->
d[2] >> 56; bin[9] = a->
d[2] >> 48; bin[10] = a->
d[2] >> 40; bin[11] = a->
d[2] >> 32; bin[12] = a->
d[2] >> 24; bin[13] = a->
d[2] >> 16; bin[14] = a->
d[2] >> 8; bin[15] = a->
d[2];
135 bin[16] = a->
d[1] >> 56; bin[17] = a->
d[1] >> 48; bin[18] = a->
d[1] >> 40; bin[19] = a->
d[1] >> 32; bin[20] = a->
d[1] >> 24; bin[21] = a->
d[1] >> 16; bin[22] = a->
d[1] >> 8; bin[23] = a->
d[1];
136 bin[24] = a->
d[0] >> 56; bin[25] = a->
d[0] >> 48; bin[26] = a->
d[0] >> 40; bin[27] = a->
d[0] >> 32; bin[28] = a->
d[0] >> 24; bin[29] = a->
d[0] >> 16; bin[30] = a->
d[0] >> 8; bin[31] = a->
d[0];
140 return (a->
d[0] | a->
d[1] | a->
d[2] | a->
d[3]) == 0;
146 r->
d[0] = t & nonzero; t >>= 64;
148 r->
d[1] = t & nonzero; t >>= 64;
150 r->
d[2] = t & nonzero; t >>= 64;
152 r->
d[3] = t & nonzero;
156 return ((a->
d[0] ^ 1) | a->
d[1] | a->
d[2] | a->
d[3]) == 0;
174 volatile int vflag = flag;
175 uint64_t mask = -vflag;
177 uint128_t t = (uint128_t)(r->
d[0] ^ mask) + ((
SECP256K1_N_0 + 1) & mask);
178 r->
d[0] = t & nonzero; t >>= 64;
180 r->
d[1] = t & nonzero; t >>= 64;
182 r->
d[2] = t & nonzero; t >>= 64;
184 r->
d[3] = t & nonzero;
185 return 2 * (mask == 0) - 1;
191#define muladd(a,b) { \
194 uint128_t t = (uint128_t)a * b; \
202 VERIFY_CHECK((c1 >= th) || (c2 != 0)); \
206#define muladd_fast(a,b) { \
209 uint128_t t = (uint128_t)a * b; \
216 VERIFY_CHECK(c1 >= th); \
229#define sumadd_fast(a) { \
232 VERIFY_CHECK((c1 != 0) | (c0 >= (a))); \
233 VERIFY_CHECK(c2 == 0); \
237#define extract(n) { \
245#define extract_fast(n) { \
249 VERIFY_CHECK(c2 == 0); \
255 uint64_t m0, m1, m2, m3, m4, m5, m6;
256 uint64_t p0, p1, p2, p3, p4;
259 __asm__ __volatile__(
261 "movq 32(%%rsi), %%r11\n"
262 "movq 40(%%rsi), %%r12\n"
263 "movq 48(%%rsi), %%r13\n"
264 "movq 56(%%rsi), %%r14\n"
266 "movq 0(%%rsi), %%r8\n"
268 "xorq %%r10, %%r10\n"
278 "addq 8(%%rsi), %%r9\n"
284 "adcq %%rdx, %%r10\n"
290 "adcq %%rdx, %%r10\n"
296 "addq 16(%%rsi), %%r10\n"
302 "addq %%rax, %%r10\n"
308 "addq %%rax, %%r10\n"
312 "addq %%r11, %%r10\n"
317 "xorq %%r10, %%r10\n"
319 "addq 24(%%rsi), %%r8\n"
345 "adcq %%rdx, %%r10\n"
354 "addq %%r14, %%r10\n"
360 :
"=g"(m0),
"=g"(m1),
"=g"(m2),
"=g"(m3),
"=g"(m4),
"=g"(m5),
"=g"(m6)
362 :
"rax",
"rdx",
"r8",
"r9",
"r10",
"r11",
"r12",
"r13",
"r14",
"cc");
365 __asm__ __volatile__(
373 "xorq %%r10, %%r10\n"
389 "adcq %%rdx, %%r10\n"
395 "adcq %%rdx, %%r10\n"
407 "addq %%rax, %%r10\n"
413 "addq %%rax, %%r10\n"
417 "addq %%r11, %%r10\n"
439 :
"=&g"(p0),
"=&g"(p1),
"=&g"(p2),
"=g"(p3),
"=g"(p4)
441 :
"rax",
"rdx",
"r8",
"r9",
"r10",
"r11",
"r12",
"r13",
"cc");
444 __asm__ __volatile__(
454 "movq %%rax, 0(%q6)\n"
467 "movq %%r8, 8(%q6)\n"
476 "movq %%r9, 16(%q6)\n"
482 "movq %%r8, 24(%q6)\n"
487 :
"rax",
"rdx",
"r8",
"r9",
"r10",
"cc",
"memory");
491 uint64_t n0 = l[4], n1 = l[5], n2 = l[6], n3 = l[7];
492 uint64_t m0, m1, m2, m3, m4, m5;
494 uint64_t p0, p1, p2, p3;
499 c0 = l[0]; c1 = 0; c2 = 0;
526 c0 = m0; c1 = 0; c2 = 0;
548 r->
d[0] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;
550 r->
d[1] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;
551 c += p2 + (uint128_t)p4;
552 r->
d[2] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;
554 r->
d[3] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;
563 const uint64_t *pb = b->
d;
564 __asm__ __volatile__(
566 "movq 0(%%rdi), %%r15\n"
567 "movq 8(%%rdi), %%rbx\n"
568 "movq 16(%%rdi), %%rcx\n"
569 "movq 0(%%rdx), %%r11\n"
570 "movq 8(%%rdx), %%r12\n"
571 "movq 16(%%rdx), %%r13\n"
572 "movq 24(%%rdx), %%r14\n"
574 "movq %%r15, %%rax\n"
577 "movq %%rax, 0(%%rsi)\n"
581 "xorq %%r10, %%r10\n"
583 "movq %%r15, %%rax\n"
589 "movq %%rbx, %%rax\n"
595 "movq %%r8, 8(%%rsi)\n"
598 "movq %%r15, %%rax\n"
601 "adcq %%rdx, %%r10\n"
604 "movq %%rbx, %%rax\n"
607 "adcq %%rdx, %%r10\n"
610 "movq %%rcx, %%rax\n"
613 "adcq %%rdx, %%r10\n"
616 "movq %%r9, 16(%%rsi)\n"
619 "movq %%r15, %%rax\n"
621 "addq %%rax, %%r10\n"
625 "movq 24(%%rdi), %%r15\n"
627 "movq %%rbx, %%rax\n"
629 "addq %%rax, %%r10\n"
633 "movq %%rcx, %%rax\n"
635 "addq %%rax, %%r10\n"
639 "movq %%r15, %%rax\n"
641 "addq %%rax, %%r10\n"
645 "movq %%r10, 24(%%rsi)\n"
646 "xorq %%r10, %%r10\n"
648 "movq %%rbx, %%rax\n"
654 "movq %%rcx, %%rax\n"
660 "movq %%r15, %%rax\n"
666 "movq %%r8, 32(%%rsi)\n"
669 "movq %%rcx, %%rax\n"
672 "adcq %%rdx, %%r10\n"
675 "movq %%r15, %%rax\n"
678 "adcq %%rdx, %%r10\n"
681 "movq %%r9, 40(%%rsi)\n"
683 "movq %%r15, %%rax\n"
685 "addq %%rax, %%r10\n"
688 "movq %%r10, 48(%%rsi)\n"
690 "movq %%r8, 56(%%rsi)\n"
693 :
"rax",
"rbx",
"rcx",
"r8",
"r9",
"r10",
"r11",
"r12",
"r13",
"r14",
"r15",
"cc",
"memory");
696 uint64_t c0 = 0, c1 = 0;
745 ret = r->
d[0] & ((1 << n) - 1);
746 r->
d[0] = (r->
d[0] >> n) + (r->
d[1] << (64 - n));
747 r->
d[1] = (r->
d[1] >> n) + (r->
d[2] << (64 - n));
748 r->
d[2] = (r->
d[2] >> n) + (r->
d[3] << (64 - n));
749 r->
d[3] = (r->
d[3] >> n);
765 return ((a->
d[0] ^ b->
d[0]) | (a->
d[1] ^ b->
d[1]) | (a->
d[2] ^ b->
d[2]) | (a->
d[3] ^ b->
d[3])) == 0;
770 unsigned int shiftlimbs;
771 unsigned int shiftlow;
772 unsigned int shifthigh;
775 shiftlimbs = shift >> 6;
776 shiftlow = shift & 0x3F;
777 shifthigh = 64 - shiftlow;
778 r->
d[0] = shift < 512 ? (l[0 + shiftlimbs] >> shiftlow | (shift < 448 && shiftlow ? (l[1 + shiftlimbs] << shifthigh) : 0)) : 0;
779 r->
d[1] = shift < 448 ? (l[1 + shiftlimbs] >> shiftlow | (shift < 384 && shiftlow ? (l[2 + shiftlimbs] << shifthigh) : 0)) : 0;
780 r->
d[2] = shift < 384 ? (l[2 + shiftlimbs] >> shiftlow | (shift < 320 && shiftlow ? (l[3 + shiftlimbs] << shifthigh) : 0)) : 0;
781 r->
d[3] = shift < 320 ? (l[3 + shiftlimbs] >> shiftlow) : 0;
786 uint64_t mask0, mask1;
787 volatile int vflag = flag;
789 mask0 = vflag + ~((uint64_t)0);
791 r->
d[0] = (r->
d[0] & mask0) | (a->
d[0] & mask1);
792 r->
d[1] = (r->
d[1] & mask0) | (a->
d[1] & mask1);
793 r->
d[2] = (r->
d[2] & mask0) | (a->
d[2] & mask1);
794 r->
d[3] = (r->
d[3] & mask0) | (a->
d[3] & mask1);
798 const uint64_t a0 = a->
v[0], a1 = a->
v[1], a2 = a->
v[2], a3 = a->
v[3], a4 = a->
v[4];
809 r->
d[0] = a0 | a1 << 62;
810 r->
d[1] = a1 >> 2 | a2 << 60;
811 r->
d[2] = a2 >> 4 | a3 << 58;
812 r->
d[3] = a3 >> 6 | a4 << 56;
820 const uint64_t M62 = UINT64_MAX >> 2;
821 const uint64_t a0 = a->
d[0], a1 = a->
d[1], a2 = a->
d[2], a3 = a->
d[3];
828 r->
v[1] = (a0 >> 62 | a1 << 2) & M62;
829 r->
v[2] = (a1 >> 60 | a2 << 4) & M62;
830 r->
v[3] = (a2 >> 58 | a3 << 6) & M62;
835 {{0x3FD25E8CD0364141LL, 0x2ABB739ABD2280EELL, -0x15LL, 0, 256}},
868 return !(a->
d[0] & 1);
static void secp256k1_modinv64(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo)
static void secp256k1_modinv64_var(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo)
static SECP256K1_INLINE int secp256k1_scalar_is_even(const secp256k1_scalar *a)
static SECP256K1_INLINE int secp256k1_scalar_check_overflow(const secp256k1_scalar *a)
static SECP256K1_INLINE void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift)
static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *k)
static SECP256K1_INLINE unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count)
static SECP256K1_INLINE void secp256k1_scalar_clear(secp256k1_scalar *r)
#define extract(n)
Extract the lowest 64 bits of (c0,c1,c2) into n, and left shift the number 64 bits.
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow)
static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x)
static const secp256k1_modinv64_modinfo secp256k1_const_modinfo_scalar
#define sumadd_fast(a)
Add a to the number defined by (c0,c1).
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar *a)
static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint64_t *l)
static void secp256k1_scalar_from_signed62(secp256k1_scalar *r, const secp256k1_modinv64_signed62 *a)
static SECP256K1_INLINE void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v)
static void secp256k1_scalar_mul_512(uint64_t l[8], const secp256k1_scalar *a, const secp256k1_scalar *b)
static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *x)
static SECP256K1_INLINE void secp256k1_scalar_cmov(secp256k1_scalar *r, const secp256k1_scalar *a, int flag)
#define extract_fast(n)
Extract the lowest 64 bits of (c0,c1,c2) into n, and left shift the number 64 bits.
#define muladd(a, b)
Add a*b to the number defined by (c0,c1,c2).
static void secp256k1_scalar_to_signed62(secp256k1_modinv64_signed62 *r, const secp256k1_scalar *a)
static SECP256K1_INLINE int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b)
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
#define sumadd(a)
Add a to the number defined by (c0,c1,c2).
static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag)
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
static SECP256K1_INLINE int secp256k1_scalar_reduce(secp256k1_scalar *r, unsigned int overflow)
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a)
static SECP256K1_INLINE int secp256k1_scalar_is_zero(const secp256k1_scalar *a)
static int secp256k1_scalar_is_high(const secp256k1_scalar *a)
static SECP256K1_INLINE unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count)
static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag)
#define muladd_fast(a, b)
Add a*b to the number defined by (c0,c1).
static SECP256K1_INLINE int secp256k1_scalar_is_one(const secp256k1_scalar *a)
static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n)
#define VG_CHECK_VERIFY(x, y)
#define VERIFY_CHECK(cond)
A scalar modulo the group order of the secp256k1 curve.